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Abstract—Driven by the rapid market growth of sensors and
beacons that offer Bluetooth Low Energy (BLE) based connectiv-
ity, this paper empirically investigates the performance charac-
teristics of the BLE interface on multiple Android smartphones,
and the consequent impact on a proposed BLE-based service:
continuous indoor location. We first use extensive measurement
studies with multiple Android devices to establish that the BLE
interface on current smartphones is not as “low-energy” as
nominally expected, and establish that continuous use of such
a BLE interface is not feasible unless we choose a moderately
large scan interval and a low duty cycle. We then explore
the implications of such constraints, on the parameters of a
smartphone’s BLE stack, on the accuracy of a BLE-based indoor
localization techniques. We show that while RF-based indoor
location can be highly accurate (80% of estimates have errors
less than or equal to 4 meters) for stationary users only if the
density of beacons is high, the combination of (large scan interval,
low duty cycle) causes the location error to degrade significantly
for moving users. These results provide practical insights into the
use cases and limitations for future BLE-based mobile services.

I. INTRODUCTION

Bluetooth Low-Power (BLE) based devices have gained
significant attention and popularity recently, especially af-
ter AppleTMintroduced built-in support in iOS7 for their
iBeaconTMprotocol, which allows BLE based beacons to be
used for proximity-driven location-based services. BLE is
designed specifically to support shorter-range, but much lower
energy-overhead and lower latency communication, and is
targeted towards sensor & IoT devices.

Many BLE-based applications use the smartphone as a
querying device, that either scans for advertisements (beacons)
from nearby BLE devices, or connects to such BLE devices
to retrieve or exchange information. Motivated by such use
cases (e.g., indoor location tracking [14]), we explored the
possible issues that may arise from the continuous use of
BLE scanning on commercial smartphones, and how addi-
tional deployment/environmental artifacts (such as the beacon
deployment density or the movement speed of individuals)
affect the overall performance metrics. More specifically, our
experimental investigations were motivated by our preliminary
observations (in [15]) on the asymmetry of the BLE energy
overhead: devices advertising their IDs or profiles consume
much less power, whereas the act of scanning (for potential
nearby devices), by state-of-the-art mobile devices, is signifi-
cantly more energy-intensive.
Overall Goals: In this paper, we study two key issues:

• Energy and Packet Loss Tradeoffs: We develop a deeper
experimental understanding of how parameter settings on

a smartphone’s BLE stack affect critical performance met-
rics, such as energy overhead, beacon miss rate, etc., un-
der various environmental conditions. More importantly,
we perform fine-grained, accurate power measurements
(using a Monsoon power monitor), in contrast to previ-
ously reported Web articles [2] that use software-based
battery drain estimates (which are known to be inaccurate
due to the well-known non-linear drain characteristics of
smartphone batteries [13]).

• Indoor Location: We focus on relatively long-lived con-
tinuous indoor location tracking (especially in places such
as shopping malls & retail supermarkets) as a popular use
case for BLE beacons, and understand how the beacon
deployment density and the smartphone BLE settings
collectively affect the resulting location accuracy.

To understand these issues, we conducted extensive mea-
surement based studies on our university campus, using the
commercially-available EstimoteTMBLE beacons [1]. We stud-
ied variations across 3 different Android devices (Samsung’s
Galaxy S5, S3 and Note 3 devices), each with a different
Android version and BLE chipset, and across different envi-
ronments/ layouts (e.g., different occupancy levels, locations,
etc.). (Additional comparative studies with iOS are deferred for
later, as the studies would require jailbroken iPhones because
the iOS APIs do not currently permit user-driven setting of
various parameters).
Key Findings & Contributions: Our empirical studies pro-
vide the following key insights:

• Higher-energy overhead on commodity smartphones:
We first confirmed that continuous BLE-scanning, as
a background service, does indeed incur high energy
overhead (power consumption of 200mW or higher) on
Android devices; in fact, it is just as expensive as perform-
ing active sensing (e.g., collecting gyroscope data). We
then investigated the impact of the following two key BLE
parameters on the smartphone’s energy overhead: (i) the
scan interval (Ts), which determines the periodicity with
which scanning is performed, and (ii) the duty cycle ( fD),
which indicates the fraction of time within each Ts period
that a phone actively scans. Our investigations show, on
Android devices, that the energy overhead is (as expected)
proportional to the duty cycle, but increases rapidly for
shorter scan intervals (below 1 sec).

• Marginal benefit for BLE vs. classic-BT (as presently
implemented): We studied the relative energy efficiency
of the more recent BLE stacks on Android smartphones,
compared to the default implementation of the older
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Technical Spec. Classic BLE
Frequency 2400 to 2483.5 MHz 2400 to 2483.5 MHz

No. Data Channels 79 37
No. Advertising Channels 32 3

Encryption 64 / 128 bit AES 128 bit
Range 100 m > 100 m

App Throughput 0.7–2.1 Mbit/s < 0.3 Mbit/s
Latency to Connect ≈100 ms 6 ms

Min. Time to Send Data 100 ms 3 ms
Power Consumption 1 W (reference) 0.01 to 0.5 W

Peak Current 22–40 mA 10–30 mA

TABLE I. CLASSIC BLUETOOTH VERSUS BLE [12], [16]

“classic-Bluetooth” (classic-BT) protocol on identical de-
vices. Surprisingly, the performance savings turned out to
be minimal, with the use of BLE saving less than 10%
power, compared to the classic-BT implementation.

• Moderately-high beacon miss rates: We also investi-
gated how the combination of (Ts, fD) values affected the
beacon miss rate (the percentage of transmitted beacons
that a smartphone fails to receive). Overall, the beacon
miss rate is (as expected) inversely proportion to the duty
cycle, and insensitive to the scan interval. However, the
key finding is that this beacon miss rate increases when
the number of in-range beacons increases, and is signif-
icantly higher in the presence of additional BLE devices
(reaching as high as 35% under continuous scanning in
our experiments).

• Establish parameters for sustainable continuous op-
eration: Given the observed energy vs. miss-rate trade-
offs, we derive a set of “sustainable” choices of (Ts, fD)
for continuous “full-day” BLE operation, such that the
resulting energy drain is at most 30% of the typical
energy drain observed in daily consumer smartphone
usage (usage numbers derived from 132 LiveLabs [5]
users). Very specifically, if BLE scanning is required to
be continuously active, we see that the scan interval for
Android devices can be lowered only to around 5secs, as
more frequent scanning results in sharp spikes in power
consumption.

• Performance of BLE-based indoor location tracking:
We studied how various choices of the BLE parameter
settings affect the accuracy of a fingerprinting-based BLE
indoor location tracking service, for both stationary and
moving users. We demonstrate that accuracies of approx.
2 meters are possible for stationary users only under dense
BLE-beacon deployments (in our case, 9 beacons within
a 66m2 area). Moreover, due to the higher beacon loss
rates associated with sustainable choices of (Ts, fD), the
accuracies degrade, to a median location error of ±9
meters, for moving users.

Our goal is to inform the community about the practical
tradeoffs and design choices that arise when using BLE for
continuous smartphone-based applications and services.

II. QUICK INTRODUCTION TO BLE

BLE, as briefly explained earlier, is a modification to the
standard Bluetooth protocol to allow for short range, low

bandwidth, low latency, very energy efficient communication.
BLE was driven by the realization that a large class of devices
are appearing on the market that periodically broadcast small
amounts of data to the surrounding region. These devices
include proximity beacons (used for indoor location), heart
monitors (used for health monitoring), and other IoT type de-
vices that sense and broadcast modest quantities of information
periodically (e.g., the level of water in a reservoir). These types
of devices have very tight energy budgets as they need to be
small (thus only small batteries are possible), and need to last
without replacement for a long time (months or even years).

To enable this, BLE makes 3 fundamental changes compared
with the standard Bluetooth protocol. First, BLE uses less
channels (40) compared to Bluetooth (79). Each channel is
also large (2 MHz in width versus 1 MHz) giving BLE a
larger range than standard Bluetooth. In addition, BLE uses
just 3 channels to scan for other BLE devices (versus regular
Bluetooth which uses 32 channels). These 3 channels are
also chosen to not interfere with either Bluetooth or Wi-
Fi. Using just 3 channels allows BLE to scan for devices
extremely quickly (taking just 6 ms to finish a scan versus 100
ms for regular Bluetooth). In addition, BLE uses a different
connection protocol that allows it to receive data even without
connecting to the sending device. This allows BLE receivers
to receive data very quickly (data is received during the 6 ms
scanning window effectively) while allowing BLE receivers to
save energy by not needing to connect to data receivers.

Second, BLE enforces strict energy controls through heavy
duty cycling of the sending device and by optimizing the trans-
mission protocol for small amounts of data (the normal use
case for most BLE devices). Third, BLE focuses on specific
application use cases that rely on short periodic transmissions
of data. This is unlike regular Bluetooth which also supports
functionality, such as pairing of a Bluetooth headset, that
requires continuous high bandwidth data. Table I shows a more
detailed comparison of BLE with Classic Bluetooth; additional
details can be obtained from various web presentations [12],
[16].

III. EXPERIMENTAL METHODOLOGY

In this paper, our specific focus is on obtaining a deeper
understanding of how the key parameter settings in a smart-
phone’s BLE stack affect higher-level performance metrics,
and how this effect is moderated by environmental factors,
such as the density of BLE beacons, the presence of additional
BLE transceivers or the indoor movement speed of the user.

A. Devices Chosen
To conduct a thorough study, we varied the parameters of the

BLE stack on 3 different Android-based smartphones. Coinci-
dentally, the phones differed both in the underlying Bluetooth
chipset, as well as the deployed OS version. This allowed us to
determine, especially for our energy efficiency studies, if the
results were artifacts of specific or older hardware, firmware
or versions, or are instead broadly representative of currently
available commercial smartphones. Table II lists the various
devices, summarizing the OS choice, the chipset use and the
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Smartphone OS version Bluetooth Chipset Key Features

Samsung S3 Android 4.3 Broadcom BCM4334 Bluetooth 4.0 +HS;
the first BLE specification

Samsung S5 Android 4.4.2 Broadcom BCM4354 Bluetooth 4.0+ HS

Samsung Note3 Android 4.4 Broadcom BCM4339 Bluetooth 4.0+ HS

iPhone 5S iOS 7.1.1 Broadcom BCM43342 Bluetooth 4.0 +HS
(illustrative only)

TABLE II. DIFFERENT BLE SMARTPHONES USED

notable differences across the devices. (Even though we do
not conduct detailed experiments with iPhones, the iPhone
5S specifications are provided for illustration. Notably, the
iPhones seem to be using comparable Broadcom chipsets, and
thus are likely to exhibit the same operating characteristics as
our representative Android platforms.)

B. Experimental Methodology
For all our studies on Android devices, we implemented our

own code, using the Android Bluetooth Low Energy developer
specifications, that allowed us to modify the Ts and fD values
of the BLE stack. More specifically, every scan interval, we
used the startLeScan method on the BluetoothAdapter object
to initiate a scan, that was then stopped after the active
scan duration (i.e., Ts ∗ fD) had elapsed. Note also that the
specs indicate that, even within an active scan duration, the
Android BLE implementation might perform its own micro-
duty cycling (by default operating in LOW POWER mode,
while also allowing the developer (in more recent revisions) to
specify alternative LOW LATENCY or BALANCED modes).
The API we used did not allow us to change this default
LOW POWER mode; instead, our fD parameter refers to the
macro (or application-level) duty cycle that typically turns the
BLE adapter ON/OFF over coarser and longer timescales. The
average power consumption values are obtained by removing
the battery and connecting the smartphone directly to the
Monsoon Power Monitor. Unless specifically mentioned, the
readings provided refer to the mean power readings obtained
across 3 separate test episodes, with each episode lasting for 10
mins (the average power of each episode is provided directly
by the Monsoon monitor).
Screen and foreground/background settings: As part of
our experimental studies, we discovered (discussed later in
Section V) that the power consumption of the BLE stack itself
is affected by two additional choices: (i) whether the phone’s
screen is ON or OFF, and (ii) whether the BLE scanning App
is run in the foreground or background. As the most common
usage model for BLE-based services envisions a continuously
running background App, the vast majority of our studies are
conducted with the screen turned OFF, and the App running
as a background service.

IV. BLE PARAMETERS & BEACON MISS RATES

In this subsection (and the next), we report on studies
that understand the impact, on the beacon miss-rate (i.e., the
percentage of beacon readings missed by a smartphone), of
the following parameters of the smartphone BLE stack:

• Scan interval (Ts) The scan interval is the basic period of
BLE scanning: every Ts seconds, the phone will activate

its BLE interface and perform scanning for a period of
time less than or equal to Ts (as decided by the duty
cycle).

• Duty cycle ( fD): The duty cycle is the fraction of time
within a scan interval that the phone stays active, i.e., it
repeatedly cycles through the 3 advertisement channels,
looking for advertisements from BLE beacons. In alterna-
tive formulations, the duty cycle is implicitly defined via
a scan period, the contiguous duration (within each Ts)

that the BLE interface is active, i.e., fD =
scan period

Ts
. In

general, a smaller duty cycle indicates a proportionately
smaller period of the BLE interface being active, and
should result in lower energy overhead at the expense
of a higher rate of missed beacons.

All measurements reported here use the EstimoteTMbeacons,
running on 32-bit ARM R©Cortex M0 CPU with 2.4 GHz Blue-
tooth 4.0 bidirectional radio, set (unless otherwise specified)
to a default transmission power (-12dBm) and a 101 msec
advertising period.

A. RSSI Variation & Miss Rate vs. Distance
We first studied the variation in the beacon miss rate (the

fraction of beacon advertisements that were not reported by
the phone, as measured over an observation period of 10
minutes), as well as the measured RSSI, as a function of the
distance between a beacon and a phone (which was configured
to continuously scan for beacons). Table III tabulates both the
measured RSSI (the average, as well as std. deviation) of all
the beacon readings, as well as the beacon miss rate, as a
function of distance. (These studies were conducted in level 4
of our SIS building, where no additional BLE devices (other
than our BLE beacons) were found to be active.) It is evident
that the RSSI values gradually fall off with distance; more
importantly, the packet loss rate is relatively steady at ≈ 15%
for a distance of 2 meters or less, but then begins to increase,
reaching as high as 27% when the beacon-phone distance is
around 5 meters for Galaxy S3. The packet loss rate is ≈ 10%
higher with Galaxy S5.

Device Distance(m)
0.5 1.0 2.0 3.0 4.0 5.0

RSSI S3 -66.47 -68.15 -71.57 -72.37 -75.18 -78.05
(-dBm) (3.73) (2.88) (4.53) (4.34) (4.98) (5.82)

S5 -77.90 -82.55 -85.05 -85.37 -86.29 -89.73
(2.24) (3.33) (4.31) (4.69) (5.27) (4.72)

Miss-rate S3 13.38 14.74 16.86 21.76 25.67 27.54
(%) (0.29) (1.43) (2.67) (1.93) (3.98) (5.02)

S5 25.26 26.09 27.51 30.64 35.78 39.46
(1.34) (2.53) (1.02) (2.58) (3.72) (5.12)

TABLE III. RSSI VARIATION & BEACON MISS RATE VS. DISTANCE

In addition, we also studied this relationship between dis-
tance and RSSI/miss-rate as a function of whether the user
was stationary or moving (either slowly or fast). The results
indicated that this relationship was effectively insensitive to
the movement speed–as long as the distance of the phone to
the beacon did not change, the packet loss rates were very
consistent.
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(a) Ts: scan interval ( fD = 50%) (b) fD: Duty Cycle (Ts=1sec)

Fig. 1. Beacon Miss Rate vs. (Ts, fD) at 2 meter distance

B. Duty Cycle & Scan Interval Effects

We now report on experiments that studied the impact of
changing the phone’s operating parameters (in particular, its
scan interval and its duty cycle) on the beacon miss rate.
Figure 1a) plots the variation (for the S3 and S5 devices) in
beacon miss rate as a function of the scan interval (for a duty
cycle value of 50%), whereas Figure 1b) plots the dependence
of the beacon miss rate on the duty cycle (with the scan interval
set to 1sec).

In general, it is seen that the beacon miss rate is independent
of the scan interval Ts, except for very small values of Ts
(which may relate to the transient period involved in turning
the phone’s BLE interface on). However, as expected, the miss
rate is clearly dependent on the duty cycle fD: in general, if
the interface is active only for an fD fraction of time, it can
be expected to miss (1- fD) of the uniformly spaced beacons.
This pair of observations will become relevant when we later
consider the energy implications of these parameters–we shall
see that larger values of fD (which provide a greater fraction of
beacon readings) is possible only at larger values of Ts, which
in turn implies a larger worst-case latency (Ts ∗ (1− fD)) in
obtaining measurements from a specific beacon.

C. The Impact of Multiple Beacons/BLE Devices

The studies in the previous two subsections measured the
miss rate associated with a single BLE beacon. However, many
use cases (including the localization service to be described
in Section VII) typically utilize multiple BLE beacons, often
deployed in close proximity to one another. Accordingly, we
also studied the impact of the number of neighboring BLE
beacons on this beacon miss rate.

Figure 2 plots the beacon miss rate (for the Samsung S5) as
a function of the number of proximate beacons (all the beacons
are within hearing range of the phone, resulting in a clique).
We can see that the beacon miss rate increases marginally as
the number of BLE beacons is varied between {1, 5, 9}.

In a separate study, we also studied the beacon miss rate of
the smartphone with a single BLE beacon, but with additional
BLE-equipped devices in the neighborhood. More specifically,
we repeated the experiments for a single beacon, in our lab,
where several other BLE devices (typically, 6 additional smart-
watches, used by other researchers) were active and within
earshot. Figure 3 plots the resulting loss rate for different
values of fD. Compared to Figure 1(b), we see that the beacon

Fig. 2. BLE Miss Rates vs. No. of Beacons (Galaxy S5)

loss rate is significantly higher (almost 10% higher). We thus
infer that the presence of additional interfering BLE devices
(which are engaged in active communication) can significantly
impair the ability of a scanning smartphone to receive BLE
beacons.

Fig. 3. BLE Miss Rates (BLE-Active Environment), (Ts= 1sec)

V. BLE PARAMETERS & ENERGY OVERHEADS

We now focus on understanding the impact of the key BLE
stack parameters (namely Ts and fD) on the smartphone’s
energy overhead. We shall see that, beyond just the values of
(Ts, fD), several considerations affect this power consumption
profile, including (a) whether the scanning App runs in the
foreground or background (for Android), (b) how many nearby
beacons are monitored during a scan, (c) whether the phone
performs a scan vs. whether it connects to the BLE device.
Background Power Consumption: Figure 4 plots the average
power consumption of the different Android devices (under
continuous scanning). The average power consumption over-
head is obtained from the difference between the phone having
a background App run in scanning mode vs. not having the
App. The figure shows this power overhead for two different
configurations: one, where the display is completely turned
OFF, and (b) where the display is kept on continuously at
maximum intensity. We see that the power consumption with
the display being OFF (which would be the typical scenario for
both our continuous Location tracking scenario) is appreciably
higher (by 10-30%). This discrepancy is due to the overheads
associated with the wake lock–when the display is ON, the
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phone CPU is already active, and hence the acquisition of
the wake lock does not incur any significant overhead. To
further scrutinize this discrepancy, Figure 5 plots the power
consumption time-series for the display OFF case with Ts=1sec
and fD=50%. We can see that acquiring wakelock consumes
7̃0 mW, significantly contributing to the power consumption
of scanning.

In general, we see that, across all the Android devices,
the average power overhead of continuous scanning is around
240mW with screen off. In recent studies, we have shown [4]
that the power consumption of individual inertial sensors (e.g.,
compass, accelerometer, or gyroscope) can consume around
60-140mW on the same commodity smartphones. Hence, our
results establish that continuous operation of the BLE stack
on the smartphone is even more expensive than continuous
sensing, and is thus likely to impose a prohibitive energy
overhead.

Fig. 4. BLE Scanning Power (Different Devices Continuous Scan)

Note: For the rest of this section, we report the power
numbers measured with the screen off, including the baseline
power, unless specified otherwise; the baseline power for
Galaxy S5, Galaxy Note 3, and Galaxy S3 are 17 mW, 22
mW, and 20 mW, respectively.

A. Energy Overheads vs. (Ts, fD)
Figure 6 plots the average power consumption of BLE

scanning for different values of the scan interval Ts and the
duty cycle fD (for the 3 Android devices). It is clear that the
power consumption is dramatically higher for smaller values
of Ts; as reported in earlier studies, this is due to the high

Fig. 5. Power Consumption Plot (Galaxy S5 (Screen OFF), Ts=1s, fD = 50%)

energy transients associated with turning the BLE interface on
and off more frequently. Figure 5 shows the impact of this
transient power consumption more vividly. As Ts = 1sec and
fD =50% for the measurement, the non-active cycle (sleep
state) is supposed to continue for 500 ms in an ideal case, but
the figure shows that the sleep state continues only for around
2̃50ms. (In fact, the phone never goes back to the sleep state
when the scan interval is set to a smaller value such as 250ms.)

More pertinently, the graphs illustrate the tradeoff between
Ts and fD: to maintain a target power consumption rate, one
must choose between a smaller (Ts, fD) (which provides lower
latency between successive readings from the same beacon,
but misses a greater fraction of beacons) vs. a larger (Ts, fD)
combination (which misses less beacons, but suffers a large
worst-case latency).

B. BLE vs. regular BT
Our measurements also reveal that the power drain as-

sociated with the use of the BLE interface on the phone
is roughly the same as using the regular (i.e., classic) BT
interface! Experimental results suggest that this is because
the Android API does not allow an App to turn on the BLE
interface exclusively; whenever the BLE interface is activated,
the regular BT interface is enabled as well. Figure 7 plots
the average scanning power overhead (for Ts = 20secs and
fD = 0.5) for the 2 different Android devices (S5 and Note
3), for the use of the BLE vs. BT interface. Compared to
classic BT, BLE is seen to save only approx. 20 mW (or
∼ 10%) power. Thus, while BLE saves significant energy on
the Estimote beacons, Android-based smartphones currently
do not benefit from this “low-energy” protocol stack.

C. Scan vs. Connect
We also investigated two alternative modes of BLE inter-

action on the Android devices: (i) Scan, where the phone’s
BLE radio sequentially scans the 3 BLE channels for broadcast
Advertisement messages, and (ii) Connect, where the phone
explicitly makes a connection to a specific BLE device and
exchanges communication messages (BLE ostensibly for faster
and simpler connections). This study was performed keeping
the phone screen on as the current Estimote Android SDK
does not provide the support to establish a connection to the
beacon in the background. So the BLE connect power numbers
are compared vs. the BLE continuous scan power with screen
on. The numbers given in Table IV are after subtracting
the baseline power for screen on, which is about 550 mW
for all the 3 Android devices. The results, however, shows
that the power consumption for establishing a connection is
1.5–2 times higher than an equivalent scanning operation for
all 3 Android devices. Thus BLE-Connect does not provide
a more energy-efficient way for the phone to retrieve data
from previously known BLE beacons (for example, for indoor
location tracking).

D. Impact of Multiple Beacons
We additionally repeated all of the experiments above by

varying the number of beacons located within range of the
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(a) Galaxy S3 (b) Galaxy S5 (c) Galaxy Note 3

Continuous Scan Power = 311.615 mW (Galaxy S3); 240.583 mW (Galaxy S5); 234.83 mW (Galaxy Note3)

Fig. 6. BLE Power Consumption for Different (Ts, fD) combinations

Smartphone BLE Scan (mW) BLE Connect (mW)
Samsung S5 151.19 297.33

Samsung Note3 167.61 321.72
Samsung S3 213.752 351.167

TABLE IV. SCAN VS. CONNECT ENERGY (SCREEN ON)

phone. Figure 8 plots the power consumed by Samsung Galaxy
S5 for scanning at three different settings (Ts=1sec, fD=0.25,
Ts=10sec, fD=0.50 and Ts=20sec, fD=0.50) when the number
of beacons is varied between 1,5,9. We can see that the
power consumed only marginally increases with increase in the
number of beacons. Similar behavior was observed for Galaxy
Note 3 and Galaxy S3 devices (results are therefore omitted)
suggesting that Android devices are robust to the number of
beacons in terms of the power consumed.

(a) Galaxy S5 (b) Galaxy Note 3
Each bar is a different (Ts, fD) combination (as stated)

Fig. 7. Scanning Power (BLE vs. BT)

VI. (Ts, fD) CHOICES FOR CONTINUOUS OPERATION

The experimental studies in the two previous sections
quantitatively establish the tradeoff between energy overhead
and beacon miss-rate, that results from different choices of
(Ts, fD). Given our intended use of BLE beacons for continuous
monitoring, we set ourselves a target of ensuring that our
App (running in the background) does not cause an energy
drain that is more than 30% of the typical daily battery drain
observed by a user.

To obtain the typical battery drain, we analyzed the battery
profile of 132 Android users belonging to our LiveLabs testbed
over a period of 1 month. Our analysis showed a 95th percentile
drain rate of approx. 50% of the battery capacity. Translating

Each bar is a different (Ts, fD) combination (as shown in legend)

Fig. 8. Power Overhead vs. No. of Beacons (Galaxy S5)

this into a requirement that a continuously running BLE-
leveraging App should thus not drain more than 15% (30% of
50) of the battery capacity over a 12 hour typical day, we arrive
at a lower lifetime bound of approx. 3 days (72 hours). Figure 9
plots for Samsung Galaxy S5, the battery lifetime values
associated with each of the (Ts, fD) combinations, compared
to the 72 hour lower bound. From the figure, we see that the
most ‘aggressive” parameter values that satisfy this lifetime
bound are Ts = 5secs, fD = 50% (obviously, larger values of Ts
will exceed this bound). Accordingly, for “sustainability”, we
indicate that the feasible set of (Ts, fD) values may be one of
the representative set: (20secs, 50%), (10secs, 50%) or (5secs,
50%).

The permitted choices can, obviously, be more aggressive
if we reduce the overall daily duration for which the BLE
interface is active. For example, if the BLE interface can be
triggered to be active only 4 hours/day, the overall lifetime
bound would effectively reduce to 18 hours and allow the
BLE stack to be operated more continuously (e.g., (Ts, fD) =
(0.5sec,75%)). The key insight thus is: pervasive applications
must have a way of intelligently determining when the BLE
interface is to be activated or de-activated, and thus bound
the overall daily period of active BLE operation.

VII. INDOOR LOCALIZATION

We now study the implications that these insights into the
operating parameters of the smartphone BLE stack have on a
very common BLE-based service: continuous indoor location.
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Fig. 9. Sustainable (Ts, fD) choices (Galaxy S5)

BLE, with its small range and its lower energy overhead, has
been widely touted as an enabler of accurate indoor location
tracking, in places such as retail stores (e.g., determining
the shopper’s aisle-level location) and public museums (e.g.,
tracking a visitor’s location at exhibit level location). For us,
the key question is: to what extent does the “sustainability
constraints” (i.e., assuring that the smartphone battery does not
drain significantly) outlined in Section VI affect the accuracy
of a BLE beacon-based indoor location system?

In our studies, we use RADAR [3], a widely-studied fin-
gerprinting based technique for indoor location. While sig-
nificantly more sophisticated algorithms have been proposed,
we choose RADAR for (i) its simplicity: its performance and
limitations are widely benchmarked, and it does not require
any additional sensor data (e.g., inertial tracking); (ii) ease
of comparison: we have a Wi-Fi based version of RADAR
operationally deployed on our campus, which allows us to
study its comparative performance. To study these properties,
we deploy a varying number of our Estimote BLE beacons
on one floor of our school building, and then derive the RSSI
fingerprints at a set of landmarks (our landmarks are aligned
with ceiling-mounted sprinklers and are 3 meters apart).

A. Spot Location Accuracy
We first study the location accuracy at each of those fin-

gerprinted landmarks, for various devices, as a function of the
number of beacons, and for 3 “sustainable” parameter settings:
Ts ={5 sec, 10 sec, 20 sec}, fD = 0.5. These studies measure
the “spot location” error: the measurements are taken by a
stationary user who stands at each of the landmarks multiple
times during the test phase.

Figure 10 plots the CDF of the location error for 3 different
values of the total number of beacons (NB = {3,6,9}), as
measured on the Galaxy S5. (Results for other Android devices
are comparable and are omitted.) From the figure, we can
see that the location accuracy is excellent (80th percentile
of error being ≤ 4meters) when the number of beacons is
high, independent of the parameter settings of the phone.
However, the location accuracy degrades appreciably (with
50th percentile of error being > 6meters, i.e., 2 landmarks)
when the phone can hear from only 3 beacons. Somewhat
surprisingly, the location accuracy is better for smaller scan
intervals (Ts), even if the phone is stationary–this is likely due

Scan Interval (s) No. of Beacons
3 6 9

5 4.31m (4.46) 3m (3.44) 0m (1.62)

10 4.62m (4.75) 4.41m (4.27) 0m (1.02)

20 5.32m (5.18) 4.73m (4.55) 1.5m (1.92)

Table shows median value (in meters) and stdev (in brackets).

Fig. 10. Location Error Distribution (Stationary) (Galaxy S5, fD = 50%)

to the effects of slow-fading, which imply that RSSI readings
from the same beacon can be uncorrelated if the measurement
interval exceeds a few seconds.

B. Robustness to Occupancy Effects
As RSSI-fingerprint based solutions are well known to be

susceptible to environmental changes, especially when the
density of human occupants varies significantly, we next tested
the accuracy of our BLE-based RADAR implementation under
different occupancy scenarios: empty, with only 1-2 occupants
in the test region (this mimics the conditions under which
the fingerprint was created), moderately crowded, with 5-6
occupants in the test region and heavily crowded, when the
test region contained 20+ occupants. Figure 11 plots the error
CDFs (again for the S5) for these three occupancy states.
We can see that an increase in occupancy impairs both the
median location error (which doubles to 4 meters under high
occupancy), and especially, the tail of the location error (the
95th percentile error range doubles to almost 10 meters).
BLE thus suffers from the same problems as Wi-Fi based
fingerprinting systems (where changes in occupancy density
are known to cause ±10−12dBm offsets in our campus).

Empty: 0.72m (1.74); Moderate: 1.62m (2.12); Heavy: 3.1m (2.62) (median
error (in meters) with stdev (in brackets)).

Fig. 11. Location Error vs. Occupancy (Galaxy S5, NB =9)
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C. Accuracy for Moving Users
We now study how the BLE-based location system when the

user continually moves, at regular indoor pedestrian speeds.
A macro-duty cycle of 0.5 implies that the phone has a
contiguous period of 0.5Ts, when its BLE interface is off and it
is unable to receive beacons. Given the relatively high values
of Ts {5,10,20} secs configured on the phone, this implies
that the freshness of location estimates on the phone might
be delayed by as much as 10 secs (0.5*20secs). Given human
movement speeds of around 1 meter/sec, this can translate into
significant estimation errors.

5s: 6.25m (4.24); 10s: 7.0m (3.97); 20s: 9.0m (2.90) (median error (in
meters) with stdev (in brackets)).

Fig. 12. Location Error for Moving Users (Galaxy S5, NB =9, fD = 50%)

Figure 12 plots the CDF of the location error for NB = {9},
using the Galaxy S5, for the case of a continually moving user.
(The results represent the aggregated CDF across a variety of
random movement trajectories across the deployment area.)
Even with Ts =5 secs, the median location error has now
increased to over 6 meters, with almost 100% of the location
estimates off by at least one landmark. We also repeated the
experiments with NB = {3,6} and confirmed that the location
accuracy degrades with a decrease in the number of beacons
simultaneously heard by the phone.

D. Implications & Comparisons with Wi-Fi
Our results and studies reveal three key insights.
• First, due to the relatively low duty cycle and high-
values of scan intervals configured on the smartphone,
the location system can exhibit a lag of 5 or more secs,
compared to the user’s true location. This has implications
for many of the ubiquitous proximity-aware applications
(e.g., instantaneous product displays in the aisles of retail
stores) envisaged for BLE beacons: users may need to
linger at specific in-store retail shelves for 10-20 secs
before their phone infers their updated location.

• Second, BLE-based location systems are very likely to
provide fine-grained location support if the scan interval
is low enough, in places such as stores and food courts.
From our experience with the Estimote beacons, accuracy
levels of 2-3 meters or below are achievable, but only with
a dense deployment density (e.g., with 9 beacons within
range at every location coordinate).

• Finally, it is instructive to compare the BLE-based
approach against more “conventional” Wi-Fi based solu-
tions. Client-side Wi-Fi solutions offer more rapid scan-
ning (once every 2.5s on the Galaxy devices) but its
power overhead (≈220 mW [6]) is too high for continuous
operation. Conversely, our deployed server-side RSSI-
based solution incurs no additional energy drain but
experiences an update latency of 2-3 minutes (primarily
due to limitations on the Wi-Fi controller).

VIII. DISCUSSION

There are two limitations of our study that we hope to extend
in the future:

• Studying iOS devices: For this paper, we do not study
the comparative performance of iPhones, as (i) the battery
cannot be removed (at least officially) and hence, accurate
fine-grained power measurements are difficult, and (ii) we
need to jailbreak phones to bypass iOS’ usual restriction
on letting normal applications run continually in the
background. Early results from ongoing work suggest
differences in the behavior of the Android vs. iOS BLE
stacks. For example, Figure 13 plots the estimated battery
drain percentage per hour (obtained by measuring the time
taken to drain the battery from 100% to 95%) for iPhone
5s for 3 different (Ts, fD) combinations, as the number of
beacons is varied from {1,5,9}. The figure shows that the
battery drain rate of iPhone 5s appears to increase by an
average 65%, in contrast to the Samsung devices where
the power drain was largely insensitive (Figure 8) to the
number of beacons.

Each bar is a different (Ts, fD) combination (as shown in legend)

Fig. 13. Battery Drain Rate (iPhone 5s) vs. No. of Beacons

• Investigating the internal Android duty-cycling modes:
As mentioned in Section II, more recent specifications
indicate that Android internally allows 3 different modes
of fine-grained duty cycling within a single scan period.
As our results use the default LOW POWER mode, we
believe that alternative modes will likely result in even
higher power drain.

–

IX. RELATED WORK

BLE-based Location Tracking: Bluetooth-based indoor posi-
tioning has been extensively researched in the past–e.g., [7]
used Bayesian fusion over RSSI probability distributions to
estimate indoor location at a reported accuracy of around
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4.7m. An early investigation of BLE-based indoor location
tracking [11] showed that while the problem of fast fading was
more acute in BLE (due to its narrower 2MHz channel width),
the use of RF fingerprint based approaches resulted in a 95-
percentile accuracy bound of 2.5m or less for BLE (compared
to almost 8.5m for a Wi-Fi based system). The promise
of BLE as a ubiquitous, low-energy beacon technology has
driven research efforts in exploring its use for indoor location
tracking. The BlueSentinel system [9] uses a modified iBeacon
protocol (where each beacon cyclically advertises different
virtual “regions”, so as to have the iOS mobile device provide
more continuous beacon readings) to demonstrate room-level
location accuracy for spot measurements (non-moving users),
using a k-NN classifier.
Bluetooth-based Context Recognition: Bluetooth-based traces
have been extensively used to infer various human activity
contexts. The Reality Mining effort [10] was a pioneer in
using Bluetooth-based contact and proximity logs obtained
during regular lifestyle activities to infer social patterns and
relationships. Bluetooth contact traces from multiple phones
have been recently used [17] to estimate the density of crowds
at various public events. More recently, the ContextSense
system [8] uses longitudinal Bluetooth contact traces among
individuals and objects to continuously identify new social
contexts of an individual.

X. CONCLUSION

Based on a detailed performance analysis of the interactions
between a smartphone’s BLE interface and commodity BLE
beacons, we obtained the following key insights:

• Continuous scanning (or scan intervals ≤ 1 sec, with
duty cycles of 50% or higher) is untenable from the
standpoint of continuous operations, as the resulting
energy overheads (arising from the wake lock and the
transient (“tail energy”) energy spikes) impose more than
30% additional overhead, over the average energy drain
experienced by Android users under regular daily use.

• Accordingly, for continuous operations, an operating
choice of (scan interval=5sec, duty cycle=50%) appears
to be the most aggressive “sustainable” operating point,
but still results in beacon reception loss rates of over 60%,
on both the Samsung S3 and S5 smartphones.

• The indoor location accuracy (using the RADAR
fingerprinting-based algorithm) was seen to be pretty high
(median error values of only 1–2 meters) for stationary
devices, only if the BLE beacon density was high (an
average beacon density of 0.14/m2 in our experiments).
However, under (large Ts, low fD) settings, the location
accuracy degraded appreciably (the median location error
becoming more than 6 meters in our experiments) for
moving users.

While the absolute performance metrics will naturally
evolve over time, our results show that: to satisfy energy, con-
straints practical systems must adopt a more intermittently-
operated BLE paradigm, where additional cheaper context
triggers are used to activate BLE scanning only during
relevant time periods.
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